Scope of Objects and Variables

University of Mount Union
CSC 120

Lecture 32

What is the scope of an object?

 The term “scope” in programming languages
refers to the part of the program in which an
object can be accessed or referred to

- object in this sense means a variable, a parameter, a
property in a class definition, etc.

* |t is determined by where the object is declared

* Objects may only be accessed in the same
block in which they are declared

Types of Scope

 Class-level scope:

» Object is declared in a class but OUTSIDE of any
method body

* Objects with class-level scope exist everywhere in
the class (and may be accessed in any method)

* These object declarations may start with a scope
keyword:

- private : cannot be accessed directly by name from
another class (only with getters and setters)

- other scope keywords: pubTlic, protected

Types of Scope - 2

* Local (or method-level) scope:
* Object is declared in a method of a class, but
outside a block defined with { } inside the method

- this can either be a parameter of the method or a
variable/object declared in the body of the method

* Objects with local scope only exist in the method in
which they are defined

 These object declarations MAY NOT start with a
scope keyword, such as private, public, etc.:

- Format is simply: pataType objectName;
- Example: Double atomicweight, tensileStrength;

Types of Scope - 3

 Block-level scope:

* Object is declared inside a block defined with { }
iInside a method

- Typically the body of an if statement, an else statement,
or a loop

- Can also be in the heading of a for loop (first part, or
initialization part)

* Objects with block scope only exist in the block in
which they are defined

* Such object declarations MAY NOT start with a
scope keyword, such as private, public, etc.

An example

* This code contains an error. Why?

public void someMethod() {
for (Integer x = 1; x <= 10; x++) {
System.out.printin("x = " + x);
¥
System.out.printin("Exited because x = " + X);
} // end of someMethod

An example

* This code contains an error. Why?

public void someMethod() {
for (Integer x = 1; x <= 10; x++) {
System.out.println("x = " + Xx);

}

System.out.printin("Exited because x = " + X);

} // end of someMethod

 Here, we are attempting to access a block-level
variable outside the block in which it is defined (x only

exists in the for loop
e How can this error be fixed?

An example

* The solution: use local scope for x

public void someMethod() {

Integer x; // local scope; exists in entire method
for (x = 1; x <= 10; x++) {

System.out.printin("x = " + Xx);

}
System.out.printin("Exited because x = " + Xx);
} // end of someMethod

» Notice that first part of for loop is NOT

Integer x = 1;

Object Naming Rules

« Remember that every object must have a
unigue name

- S0 no two objects can have the same name

- Important: this rule only applies to objects that are IN
THE SAME SCOPE

Objects in different scopes can have the same
names

- for example, a local variable with the same name as a
class-level property

* This fact can lead to some tricky situations....

Same name, different scope
e Consider this example.

public class MUPanel {
Double tax = 0.07;

public MUPanel() {
Double amtDue = calculateCost(100.00);
System.out.printin("You owe $"
+ amtDue + " using a tax rate of "
+ tax);
} // end of constructor

public Double calculateCost(Double beforeTaxAmt) {
Double tax = 0.10;
Double total;
total = beforeTaxAmt + beforeTaxAmt*tax;
return total;

} // end of calculateCost

Same name, different scope
* Output produced by the previous code:

You owe $110.00 using a tax rate of 0.07

Same name, different scope
* Output produced by the previous code:

You owe $110.00 using a tax rate of 0.07

* The issue is two variables with different scopes

that have the same name
- A class-level property named tax with a value of 0.07

- Alocal variable named tax with a value of 0.10

* Inside the calculateCost method, a reference to
tax resolves to the local object, not the class-
level one

* References ALWAYS refer to the object with the
“smallest” or “closest” scope

Parameter Names in Constructors

and Setters

* This is why we have used different names for
the parameters in our Constructor and Setter
methods so far this semester:

public class Dog {
String name, breed;
Integer age, weight;

public Dog(String n, String b, int a, int w) {
hame = n;
breed = b;
age = a;
weight = w;
} // end of constructor

public void setweight(int w) {
weight = w;
} // end of setweight
} // end of class Dog

Parameter Names in Constructors

and Setters

e |f we tried to use the same names for the
properties and the parameters, it wouldn't work:

public class Dog {
String name, breed;
Integer age, weight;

public Dog(String name, String breed, int age, int weight) {
nhame = name;
breed = breed;
age = age;
weight = weight;
} // end of constructor

public void setweight(int weight) {
weight = weight;
} // end of setweight

} // end of class Dog

Parameter Names in Constructors

and Setters
* The problem with a statement such as
breed = breed;

Is that the system has no way to know that we
want the parameter to be on the r.h.s. of the
assignment and the class-level property to be on
the |.h.s. of the assignment

* The rule is that we use the "most local” object
when resolving a name, so both sides of the
assignment use the parameter, and nothing is
stored in the properties of the class

 \WWe need new notation to allow us to access the
properties on the |.h.s. In this situation

Special Notation for accessing
class-level objects anywhere

e Oftentimes, we will want to access a class-level
property or object in a method that has a local
variable with the same name

 To do that, we use the this keyword

- Precede the name of the class-level object with this.
- Such references always access the class-level object
- A way to overcome the naming conflict

This is very useful in constructors and setters....

this. IS the solution to this problem!

e« same names for the properties and the
parameters, not a problem when we use this.:

public class Dog {
String name, breed;
Integer age, weight;

public Dog(String name, String breed, int age, int weight) {
this.name = name;
this.breed = breed;
this.age = age;
this.weight = weight;
} // end of constructor

public void setweight(int weight) {
this.weight = weight;
} // end of setweight

} // end of class Dog

Either style is acceptable

* Using the same names for parameters and
properties (which requires the use of this.)
was not shown earlier this semester because of

complexity and possible confusion

Either style is acceptable

* Using the same names for parameters and
properties (which requires the use of this.)
was not shown earlier this semester because of

complexity and confusion

* Why show it now?

- NetBeans has a feature that we will use in Lab # 9 next
time that is very convenient, but uses this. notation

- So to use this feature, you need to understand this other
notation

* Believe me, you'll thank me once you see it....

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

