
  

Scope of Objects and Variables

University of Mount Union

CSC 120

Lecture 32



  

What is the scope of an object?
● The term “scope” in programming languages 

refers to the part of the program in which an 
object can be accessed or referred to

– object in this sense means a variable, a parameter, a 
property in a class definition, etc.

● It is determined by where the object is declared

● Objects may only be accessed in the same 
block in which they are declared



  

Types of Scope
● Class-level scope:

● Object is declared in a class but OUTSIDE of any 
method body

● Objects with class-level scope exist everywhere in 
the class (and may be accessed in any method)

● These object declarations may start with a scope 
keyword:

– private :  cannot be accessed directly by name from      
                  another class (only with getters and setters)

– other scope keywords:  public, protected



  

Types of Scope - 2
● Local (or method-level) scope:

● Object is declared in a method of a class, but 
outside a block defined with { } inside the method
– this can either be a parameter of the method or a 

variable/object declared in the body of the method
● Objects with local scope only exist in the method in 

which they are defined

● These object declarations MAY NOT start with a 
scope keyword, such as private, public, etc.:
– Format is simply:        DataType  objectName;
– Example:        Double atomicWeight, tensileStrength;



  

Types of Scope - 3
● Block-level scope:

● Object is declared inside a block defined with { } 
inside a method
– Typically the body of an if statement, an else statement, 

or a loop
– Can also be in the heading of a for loop (first part, or 

initialization part)
● Objects with block scope only exist in the block in 

which they are defined
● Such object declarations MAY NOT start with a 

scope keyword, such as private, public, etc.



  

An example
● This code contains an error.  Why?

    public void someMethod( ) {

    for ( Integer x = 1; x <= 10; x++ ) {

        System.out.println("x = " + x);

    }

    System.out.println("Exited because x = " + x);

  } // end of someMethod

  



  

An example
● This code contains an error.  Why?

    public void someMethod( ) {

    for ( Integer x = 1; x <= 10; x++ ) {

        System.out.println("x = " + x);

    }

    System.out.println("Exited because x = " + x);

  } // end of someMethod

● Here, we are attempting to access a block-level 
variable outside the block in which it is defined (x only 
exists in the for loop

● How can this error be fixed? 



  

An example
● The solution:  use local scope for x

    public void someMethod( ) {

    Integer x;  // local scope; exists in entire method

    for ( x = 1; x <= 10; x++ ) {

        System.out.println("x = " + x);

    }

    System.out.println("Exited because x = " + x);

  } // end of someMethod

● Notice that first part of for loop is NOT                 
     Integer x = 1;



  

Object Naming Rules
● Remember that every object must have a 

unique name
– so no two objects can have the same name
– Important:  this rule only applies to objects that are IN 

THE SAME SCOPE

Objects in different scopes can have the same 
names

– for example, a local variable with the same name as a 
class-level property

● This fact can lead to some tricky situations....



  

Same name, different scope
● Consider this example.

public class MUPanel {
  Double tax = 0.07;

  public MUPanel() {
      Double amtDue = calculateCost(100.00);
      System.out.println( "You owe $"
             + amtDue + " using a tax rate of "
             + tax );
  } // end of constructor

  public Double calculateCost(Double beforeTaxAmt) {
      Double tax = 0.10;
      Double total;
      total = beforeTaxAmt + beforeTaxAmt*tax;
      return total;
  } // end of calculateCost

}



  

Same name, different scope
● Output produced by the previous code:

You owe $110.00 using a tax rate of 0.07



  

Same name, different scope
● Output produced by the previous code:

You owe $110.00 using a tax rate of 0.07

● The issue is two variables with different scopes 
that have the same name

– A class-level property named tax with a value of 0.07
– A local variable named tax with a value of 0.10

● Inside the calculateCost method, a reference to 
tax resolves to the local object, not the class-
level one

● References ALWAYS refer to the object with the 
“smallest” or “closest” scope



  

Parameter Names in Constructors 
and Setters

● This is why we have used different names for 
the parameters in our Constructor and Setter 
methods so far this semester:
public class Dog {
  String name, breed;
  Integer age, weight;

  public Dog(String n, String b, int a, int w) {
      name = n;
      breed = b;
      age = a;
      weight = w;
  } // end of constructor

  public void setWeight(int w) {
      weight = w;
  } // end of setWeight
} // end of class Dog



  

Parameter Names in Constructors 
and Setters

● If we tried to use the same names for the 
properties and the parameters, it wouldn't work:
public class Dog {
  String name, breed;
  Integer age, weight;

  public Dog(String name, String breed, int age, int weight) {
      name = name;
      breed = breed;
      age = age;
      weight = weight;
  } // end of constructor

  public void setWeight(int weight) {
      weight = weight;
  } // end of setWeight

} // end of class Dog



  

Parameter Names in Constructors 
and Setters

● The problem with a statement such as 
          breed = breed;

is that the system has no way to know that we 
want the parameter to be on the r.h.s. of the 
assignment and the class-level property to be on 
the l.h.s. of the assignment

● The rule is that we use the “most local” object 
when resolving a name, so both sides of the 
assignment use the parameter, and nothing is 
stored in the properties of the class

● We need new notation to allow us to access the 
properties on the l.h.s. in this situation



  

Special Notation for accessing 
class-level objects anywhere

● Oftentimes, we will want to access a class-level 
property or object in a method that has a local 
variable with the same name

● To do that, we use the this keyword
– Precede the name of the class-level object with this.
– Such references always access the class-level object
– A way to overcome the naming conflict
–

This is very useful in constructors and setters....



  

this. is the solution to this problem!
● same names for the properties and the 

parameters, not a problem when we use this.:
public class Dog {
  String name, breed;
  Integer age, weight;

  public Dog(String name, String breed, int age, int weight) {
      this.name = name;
      this.breed = breed;
      this.age = age;
      this.weight = weight;
  } // end of constructor

  public void setWeight(int weight) {
      this.weight = weight;
  } // end of setWeight

} // end of class Dog



  

Either style is acceptable
● Using the same names for parameters and 

properties (which requires the use of this.) 
was not shown earlier this semester because of 
complexity and possible confusion



  

Either style is acceptable
● Using the same names for parameters and 

properties (which requires the use of this.) 
was not shown earlier this semester because of 
complexity and confusion

● Why show it now?
– NetBeans has a feature that we will use in Lab # 9 next 

time that is very convenient, but uses this. notation
– So to use this feature, you need to understand this other 

notation

● Believe me, you'll thank me once you see it....


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

